Sains Malaysiana 53(12)(2024): 3307-3318

http://doi.org/10.17576/jsm-2024-5312-14

 

Aktiviti Antimalaria dan Skizontisida Sebatian Analog 4-aminokuinolina-pirano[2,3-c]pirazol terhadap Plasmodium knowlesi A1H1 dan Analisis Dok Molekul

(Antimalarial and Schizonticidal Activities of 4-aminoquinoline-pyrano[2,3-c]pyrazole Analogs against Plasmodium knowlesi A1H1 and Molecular Docking Analysis)

 

SITI NURFATEHAH KAMAL1,#, AMATUL HAMIZAH ALI2,#, NG YEE LING3, MOHD ASYRAF SHAMSUDIN2, SITI NUR HIDAYAH JAMIL2, HANI KARTINI AGUSTAR1, NURUL IZZATY HASSAN2, MOHD RIDZUAN MOHD ABD RAZAK4, LAU YEE LING3 & JALIFAH LATIP2,*

 

1Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Jabatan Sains Kimia, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Jabatan Parasitologi, Fakulti Perubatan, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
4Pusat Penyelidikan Perubatan Herba, Institut Penyelidikan Perubatan, Kompleks Institut Kesihatan Negara, Kementerian Kesihatan Malaysia, 40170 Shah Alam, Selangor, Malaysia

 

Received: 4 December 2023/Accepted: 7 October 2024

 

#These authors contributed equally

 

Abstrak

Kemunculan jangkitan zoonosis Plasmodium knowlesi dan perkembangan kerintangan parasit terhadap ubat antimalaria sedia ada memacu penyelidikan dinamik bagi meneroka dan mencari agen antimalaria yang baharu. Penghibridan farmakoforik ialah suatu strategi gabungan dua sebatian yang berlainan farmakofor untuk mencegah kerintangan parasit terhadap ubat antimalaria sedia ada dan mengurangkan kesan sampingan ubat antimalaria. Lima terbitan kuinolina telah menunjukkan aktiviti antimalaria terhadap parasit malaria iaitu kesan analog 4-aminokuinolina-pirano[2,3-c]pirazol terhadap strain Plasmodium falciparum 3D7 dan K1. Oleh itu, objektif kajian ini adalah untuk menilai aktiviti antimalaria dan skizontisida analog 4-aminokuinolina-pirano[2,3-c]pirazol terhadap strain parasit zoonotik iaitu Plasmodium knowlesi A1H1 yang telah diadaptasi dalam darah manusia. Kesemua analog kuinolina telah diuji secara in vitro terhadap P. knowlesi A1H1 menggunakan plasmodium laktat dehidrogenase (pLDH) dan ujian pematangan skizon (SMA). Analisis dok molekul analog kuinolina turut dilakukan pada satu protein sasaran, Plasmodium sp. pengangkut rintang-klorokuina (PfCRT) yang bertujuan untuk memahami kemungkinan potensi protein ini sebagai sasaran antimalaria analog kuinolina tersebut. Hasil yang diperoleh menunjukkan bahawa analog 2 dan 5 (EC50 = 0.15-0.16 µM) mempunyai kesan antiplasmodium yang poten terhadap P. knowlesi. Tambahan lagi, analog 2 dan 5 mempunyai kesan skizontisida yang poten terhadap P. knowlesi berbanding sebatian analog yang lain. Suatu kajian menggunakan analisis dok in silico menunjukkan bahawa analog 2 dan 5 mempunyai konformasi pengikatan sempurna dalam tapak domain transmembran-1 PfCRT dengan masing-masing mempunyai nilai afiniti pengikatan -9.1 kcal/mol. Hasil kajian ini mencadangkan bahawa analog 2 dan 5 menghalang pertumbuhan parasit zoonotik P. knowlesi dan menyasarkan protein parasit PfCRT sebagai sasaran molekul berpotensi.

 

Kata kunci: Aktiviti antiplasmodium; dok molekul; malaria; Plasmodium knowlesi; skizontisid; 4-aminokuinolina-pirano[2,3-c]pirazol

 

Abstract

The emergence of the zoonotic infection Plasmodium knowlesi, as well as the development of parasite resistance to current antimalarial drugs, is driving the dynamic research into a new antimalarial agent. Pharmacophoric hybridization is a combination strategy to prevent drug resistance and drug-drug interactions. Five quinoline derivatives namely 4-aminoquinoline-pyrano[2,3-c]pyrazole analogues showed potent antimalarial activities against Plasmodium falciparum strains 3D7 and K1. The objective of this study is to evaluate the antimalarial and schizonticidal activities of 4-aminoquinoline-pyrano[2,3-c]pyrazole analogs against the human-adapted zoonotic parasite strain, Plasmodium knowlesi A1H1. All quinoline analogs were tested in vitro against P. knowlesi A1H1 using the plasmodium lactate dehydrogenase (pLDH) and schizont maturation assays (SMA). Molecular docking analysis of these quinoline analogs on a protein target, Plasmodium sp. chloroquine resistant transporter (PfCRT), was performed to understand the possible antimalarial target of these quinoline analogs. The results showed that analogs 2 and 5 have potent antiplasmodial effects against P. knowlesi (EC50 = 0.15-0.16 µM). Furthermore, compared to all test compounds, analogs 2 and 5 had good schizonticidal effects. A study using in silico docking showed that analogs 2 and 5 had perfect binding conformations in the PfCRT’s transmembrane domain 1 site, with binding affinities of -9.1 kcal/mol, respectively. The results of this study suggested that quinoline analogs 2 and 5 inhibited the growth of the zoonotic parasite P. knowlesi and targeted the parasite protein PfCRT as a potential molecular target.

 

Keywords: Antiplasmodial activities; malaria; molecular docking; Plasmodium knowlesi; schizonticide; 4-aminoquinoline-pyrano[2,3-c]pyrazole

 

REFERENCES

Aguiar, A.C.C., Santos, R.D.M., Figueiredo, F.J.B., Cortopassi, W.A., Pimentel, A.S., França, T.C.C., Meneghetti, M.R. & Krettli, A.U. 2012. Antimalarial activity and mechanisms of action of two novel 4-aminoquinolines against chloroquine-resistant parasites. PLoS ONE 7(5): e37259.

Amir, A., Russell, B., Liew, J.W.K., Moon, R.W., Fong, M.Y., Vythilingam, I., Subramaniam, V., Snounou, G. & Lau, Y.L. 2016. Invasion characteristics of a Plasmodium knowlesi line newly isolated from a human. Scientific Reports 6(1): 24623.

Antony, H.A., Topno, N.S., Gummadi, S.N., Sankar, D.S., Krishna, R. & Parija, S.C. 2019. In silico modeling of Plasmodium falciparum chloroquine resistance transporter protein and biochemical studies suggest its key contribution to chloroquine resistance. Acta tropica 189: 84-93.

Chauhan, K., Sharma, M., Saxena, J., Singh, S.V., Trivedi, P., Srivastava, K., Puri, S.K., Saxena, J.K., Chaturvedi, V. & Chauhan, P.M. 2013. Synthesis and biological evaluation of a new class of 4-aminoquinoline–rhodanine hybrid as potent anti-infective agents. European Journal of Medicinal Chemistry 62: 693-704.

Coulibaly, A., Diop, M.F., Kone, A., Dara, A., Ouattara, A., Mulder, N., Miotto, O., Diakite, M., Djimde, A. & Amambua-Ngwa, A. 2022. Genome-wide SNP analysis of Plasmodium falciparum shows differentiation at drug-resistance-associated loci among malaria transmission settings in southern Mali. Frontiers in Genetics 13: 943445.

Daneshvar, C., Davis, T.M., Cox-Singh, J., Rafa’ee, M.Z., Zakaria, S.K., Divis, P.C. & Singh, B. 2009. Clinical and laboratory features of human Plasmodium knowlesi infection. Clinical Infectious Diseases 49(6): 852-860.

de Villiers, K.A. & Egan, T.J. 2021. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Accounts of Chemical Research 54(11): 2649-2659.

Domínguez, J.N., Charris, J.E., Caparelli, M. & Riggione, F. 2002. Synthesis and antimalarial activity of substituted pyrazole derivatives. Arzneimittelforschung 52(6): 482-488.

Dorn, A., Vippagunta, S.R., Matile, H., Jaquet, C., Vennerstrom, J.L. & Ridley, R.G. 1998. An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochemical Pharmacology 55(6): 727-736.

Ecker, A., Lehane, A.M., Clain, J. & Fidock, D.A. 2012. PfCRT and its role in antimalarial drug resistance. Trends in Parasitology 28(11): 504-514.

Fatih, F.A., Staines, H.M., Siner, A., Ahmed, M.A., Woon, L.C., Pasini, E.M., Kocken, C.H., Singh, B., Cox-Singh, J. & Krishna, S. 2013. Susceptibility of human Plasmodium knowlesi infections to anti-malarials. Malaria Journal 12: 425.

Folarin, O.A., Bustamante, C., Gbotosho, G.O., Sowunmi, A., Zalis, M.G., Oduola, A.M.J. & Happi, C.T. 2011. In vitro amodiaquine resistance and its association with mutations in pfcrt and pfmdr1 genes of Plasmodium falciparum isolates from Nigeria. Acta Tropica 120(3): 224-230.

Fong, K.Y. & Wright, D.W. 2013. Hemozoin and antimalarial drug discovery. Future Medicinal Chemistry 5(12): 1437-1450.

Gupta, P. & Vasudeva, N. 2010. In vitro antiplasmodial and antimicrobial potential of Tagetes erecta roots. Pharmaceutical Biology 48(11): 1218-1223.

Insuasty, B., Ramírez, J., Becerra, D., Echeverry, C., Quiroga, J., Abonia, R., Robledo, S.M., Vélez, I.D., Upegui, Y., Muñoz, J.A. & Ospina, V. 2015. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo [3, 4-b][1, 4] diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. European Journal of Medicinal Chemistry 93: 401-413.

Kaur, K., Jain, M., Reddy, R.P. & Jain, R. 2010. Quinolines and structurally related heterocycles as antimalarials. European Journal of Medicinal Chemistry 45(8): 3245-3264.

Kim, J., Tan, Y.Z., Wicht, K.J., Erramilli, S.K., Dhingra, S.K., Okombo, J., Vendome, J., Hagenah, L.M., Giacometti, S.I., Warren, A.L. & Nosol, K. 2019. Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature 576(7786): 315-320.

Lau, Y.L., Tan, L.H., Chin, L.C., Fong, M.Y., Noraishah, M.A.A. & Rohela, M. 2011. Plasmodium knowlesi reinfection in human. Emerging Infectious Diseases 17(7): 1314.

Makarov, V., Manina, G., Mikusova, K., Möllmann, U., Ryabova, O., Saint-Joanis, B., Dhar, N., Pasca, M.R., Buroni, S., Lucarelli, A.P. & Milano, A. 2009. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324(5928): 801-804.

Makler, M.T. & Hinrichs, D.J. 1993. Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. The American Journal of Tropical Medicine and Hygiene 48(2): 205-210.

Ministry of Health Malaysia (MOH). 2023. https://www.sinarharian.com.my/article/257431/edisi/terengganu/kes-malaria-meningkat-75-peratus-di-terengganu

Moon, R.W., Hall, J., Rangkuti, F., Ho, Y.S., Almond, N., Mitchell, G.H., Pain, A., Holder, A.A. & Blackman, M.J. 2013. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes. Proceedings of the National Academy of Sciences 110(2): 531-536.

Rao, S.N., Head, M.S., Kulkarni, A. & LaLonde, J.M. 2007. Validation studies of the site-directed docking program LibDock. Journal of chemical information and modelling 47(6):2159-2171.

Ravindar, L., Hasbullah, S.A., Rakesh, K.P. & Hassan, N.I. 2022. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. European Journal of Pharmaceutical Sciences 2022: 106365.

Rezali, N.S., Zahrin, N.A., Ali, A.H., Ling, N.Y., Agustar, H.K. & Ling, L.Y. 2023. Antimalarial assessment of certain 1, 2, 4-triazoles and benzoquinolones against Plasmodium knowlesi A1H1. Journal of Science and Mathematics Letters 11(1): 43-50.

Roux, A.T., Maharaj, L., Oyegoke, O., Akoniyon, O.P., Adeleke, M.A., Maharaj, R. & Okpeku, M. 2021. Chloroquine and sulfadoxine–pyrimethamine resistance in Sub-Saharan Africa - A review. Frontiers in Genetics 12: 668574.

Shamsuddin, M.A., Ali, A.H., Zakaria, N.H., Mohammat, M.F., Hamzah, A.S., Shaameri, Z., Lam, K.W., Mark-Lee, W.F., Agustar, H.K., Mohd Abd Razak, M.R. & Latip, J. 2021. Synthesis, molecular docking, and antimalarial activity of hybrid 4-Aminoquinoline-pyrano [2, 3-c] pyrazole derivatives. Pharmaceuticals 14(11): 1174.

Shibeshi, M.A., Kifle, Z.D. & Atnafie, S.A. 2020. Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and Drug Resistance 13: 4047-4060.

Singh, B. & Daneshvar, C. 2013. Human infections and detection of Plasmodium knowlesi. Clinical Microbiology Reviews 26(2): 165-184.

Singh, J., Mansuri, R., Atul, P.K., Kumar, M. & Sharma, A. 2021. Development of selective inhibitors of crucial drug target Phosphoethanolamine methyltransferase of Plasmodium falciparum based on Chemo informatics and in vitro experiments. Journal of Pharmacognosy and Phytochemistry 10(2): 298-309.

Singh, K., Kaur, H., Smith, P., de Kock, C., Chibale, K. & Balzarini, J. 2014. Quinoline–pyrimidine hybrids: Synthesis, antiplasmodial activity, SAR, and mode of action studies. Journal of Medicinal Chemistry 57(2): 435-448.

Smit, F.J. & N’Da, D.D. 2014. Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorganic & Medicinal Chemistry 22(3): 1128-1138.

Starčević, K., Pešić, D., Toplak, A., Landek, G., Alihodžić, S., Herreros, E., Ferrer, S., Spaventi, R. & Perić, M. 2012. Novel hybrid molecules based on 15-membered azalide as potential antimalarial agents. European Journal of Medicinal Chemistry 49: 365-378.

Strekowski, L., Mokrosz, J.L., Honkan, V.A., Czarny, A., Cegla, M.T., Wydra, R.L., Patterson, S.E. & Schinazi, R.F. 1991. Synthesis and quantitative structure-activity relationship analysis of 2-(aryl or heteroaryl) quinolin-4-amines, a new class of anti-HIV-1 agents. Journal of Medicinal Chemistry 34(5): 1739-1746.

Tiwari, V.S., Joshi, P., Yadav, K., Sharma, A., Chowdhury, S., Manhas, A., Kumar, N., Tripathi, R. & Haq, W. 2021. Synthesis and antimalarial activity of 4-methylaminoquinoline compounds against drug-resistant parasite. ACS Omega 6(20): 12984-12994.

Tobin, R., Harrison, L.E., Tully, M.K., Lubis, I.N., Noviyanti, R., Anstey, N.M., Rajahram, G.S., Grigg, M.J., Flegg, J.A., Price, D.J. & Shearer, F.M. 2023. Updating estimates of Plasmodium knowlesi malaria risk in response to changing land use patterns across Southeast Asia. MedRxiv https://doi.org/10.1101/2023.08.04.23293633

Van Schalkwyk, D.A., Riscoe, M.K., Pou, S., Winter, R.W., Nilsen, A., Duffey, M., Moon, R.W. & Sutherland, C.J. 2020. Novel endochin-like quinolones exhibit potent in vitro activity against Plasmodium knowlesi but do not synergize with proguanil. Antimicrobial Agents and Chemotherapy https://doi.org/10.1128/aac.02549-19

Vinindwa, B., Dziwornu, G.A. & Masamba, W. 2021. Synthesis and evaluation of Chalcone-Quinoline based molecular hybrids as potential anti-malarial agents. Molecules 26(13):4093.

Warhurst D.C. 2001. The parasite. Travelers’ Malaria. p. 104.

World Health Organization (WHO). 2022. World Malaria Report. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022  Accessed on January 1, 2023.

World Health Organization (WHO). 2021. WHO working group on late-stage development for malaria vaccines to reduce disease burden: Phase 3 considerations on the path to licensure and wide-scale implementation: report on a virtual meeting, 12 and 19 April 2021. https://apps.who.int/iris/handle/10665/354356. Accessed on January 1, 2023.

World Health Organization (WHO). 2001. In vitro micro-test (Mark III) for the assessment of the response of Plasmodium falciparum to chloroquine, mefloquine, quinine, amodiaquine, sulfadoxine (No. CTD/MAL/97.20 Rev. 2 2001). https://apps.who.int/iris/handle/10665/67373. Accessed on January 1, 2023.

 

*Corresponding author; email: jalifah@ukm.edu.my

 

 

 

 

 

 

 

 

previous next